K.S. Rangasamy College of Technology

(Autonomous)

Curriculum & Syllabus of

M.Tech. Nanoscience and Technology

(For the batch admitted in 2020 – 2022)

R 2018

Courses Accredited by NBA, Accredited by NAAC with 'B⁺⁺' Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

VISION

To excel as a world class teaching and research hub in Nanoscience and Technology.

MISSION

- To facilitate students and researchers to engage in need-based research in multidisciplinary domains
- To engage in transformative technology based education that builds industry and society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Our graduates will demonstrate their competence in the processing of nanostructured materials and use them for effective industrial applications.
- **PEO2:** Our graduates will demonstrate interdisciplinary proficiency both in theory and practice in Nanoscience and Technology research.
- **PEO3:** Our graduates will apply the scientific concepts and mathematical analysis to bring out need based nano-products with ethical responsibility.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- PO1: Ability to understand the importance and the impact of Nanoscience and Technology
- **PO2:** Ability to approach, analyse and bring out scientific solution for a given problem.
- **PO3:** Ability to implement multidisciplinary concepts and ideas for the development of innovative technologies.
- **PO4:** Capability to extend the acquired knowledge for trouble shooting experimental errors.
- **PO5:** Ability to demonstrate leadership, quality and entrepreneurship.
- **PO6:** Demonstrate technical skills in operation and maintenance of sophisticated instrumentations.
- **PO7:** Ability to protect their innovative research through IPR.
- **PO8:** Ability to handle/approach challenging issues from industries.
- **PO9:** Innovation for high quality research on par with international laboratories.
- **PO10:** Ability to explore science projects for need based industry.
- **PO11:** Ability to bring out good quality research proposal as well as research publications.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

Engineering Graduates will be able to:

- **PSO1:** Analyse and synthesize new nano materials for multiple applications.
- **PSO2:** Design processing conditions to engineer functional nanomaterials.
- **PSO3:** Apply and transfer interdisciplinary systems and Engineering approaches to the field of Nanotechnology.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMMEOUTCOMES (POs)

The B.E. Mechanical Engineering Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme Educational					Progra	mme O	utcome	es			
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
PEO 1	2	3	3	1	2	2	1	2	1	1	2
PEO 2	3	2	1	2	3	2	1	2	2	3	3
PEO 3	2	2	1	2	2	3	1	2	2	3	2

Contributions: 1- low, 2- medium, 3- high

SEMESTER I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С			
THEORY											
1.	1. 50 PNT 101 Advanced Numerical Methods BS 5 3 2 0 4										
2.	50 PNT 102	Quantum Mechanics	PC	5	3	2	0	4			
3.	50 PNT 103	Nano Structured Materials	PC	3	3	0	0	3			
4.	50 PNT 104	Advanced Materials	PC	3	3	0	0	3			
5.	50 PNT 105	Synthesis of Nanostructured Materials	PC	3	3	0	0	3			
6.	50 PNT E1*	Elective I	PC	3	3	0	0	3			
	PRACTICALS										
7.	50 PNT 1P1	Synthesis and Characterisation of Nanomaterials Laboratory - I	PC	3	0	0	3	2			
			Total	25	18	4	3	22			

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С				
	THEORY											
1.	50 PNT 201	Characterisation Techniques	PC	3	3	0	0	3				
2.	50 PNT 202	Nanocomposites	PC	3	3	0	0	3				
3.	50 PNT 203	Nanosensors and Transducers	PC	3	3	0	0	3				
4.	50 PNT 204	Nanolithography	PC	3	3	0	0	3				
5.	50 PNT E2*	Elective II	PC	3	3	0	0	3				
6.	50 PNT E3*	Elective III	PC	3	3	0	0	3				
7.	50 AT 004	Value Education	AT	2	2	0	0	0				
		PRACTICALS										
8.	50 PNT 2P1	Nano Device Fabrication and Simulation Laboratory-II	PC	3	0	0	3	2				
9.	50 PNT 2P2	Technical Report Preparation and Presentation	PC	2	0	0	2	0				
			Total	25	20	0	5	20				

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С				
	THEORY											
1.	50 PNT E4*	Elective IV	PC	3	3	0	0	3				
2.	50 PNT E5*	Elective V	PC	3	3	0	0	3				
3.	50 AT 002	Disaster Management	AT	2	2	0	0	0				
4.	50 AT 009	Research Ethics	AT	1	1	0	0	0				
		PRACTICALS										
5.	50 PNT 3P1	Project Work - Phase I	PC	12	0	0	12	7				
			Total	21	9	0	12	13				

SEMESTER IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
PRACTICALS										
1.	50 PNT 4P1	Project Work - Phase II	PC	35	0	0	35	16		
			Total	35	0	0	35	16		

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 71

Note: HS- Humanities and Social Sciences including Management Courses, BS- Basic Science Courses, ES-Engineering Science Courses, PE-Professional Core Courses, PE-Professional Elective Courses, OE- Open Elective Courses, EEC-Employability Enhancement Courses & MC- Mandatory Courses

HUMANITIES AND SOCIAL SCIENCES (HS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	-	-	-	-	-	-	-	-

BASIC SCIENCE (BS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	
1.	50 PNT 101	Advanced Numerical Methods	BS	5	3	2	0	4	Ī

ENGINEERING SCIENCES (ES)

S.No.	Course Code	Course Title	Category	Contact Periods	Г	Т	Р	С
1.	-	-	-	-	•	-	-	-

PROFESSIONAL CORE (PC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 PNT 102	Quantum Mechanics	PC	5	3	2	0	4
2.	50 PNT 103	Nano Structured Materials	PC	3	3	0	0	3
3.	50 PNT 104	Advanced Materials	PC	3	3	0	0	3
4.	50 PNT 105	Synthesis of Nanostructured Materials	PC	3	3	0	0	3
5.	50 PNT 1P1	Synthesis and Characterization of Nanomaterials Laboratory - I	PC	3	0	0	3	2
6.	50 PNT 201	Characterization Techniques	PC	3	3	0	0	3
7.	50 PNT 202	Nanocomposites	PC	3	3	0	0	3
8.	50 PNT 203	Nanosensors and Transducers	PC	3	3	0	0	3
9.	50 PNT 204	Nanolithography	PC	3	3	0	0	3
10.	50 PNT 2P1	Nano Device Fabrication and Simulation Laboratory-II	PC	3	0	0	3	2
11.	50 PNT 2P2	Technical Report Preparation and Presentation	PC	2	0	0	2	0

PROFESSIONAL ELECTIVES (PE)

SEMESTER I, ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 PNT E11	Polymers in Nanotechnology	PE	3	3	0	0	3
2.	50 PNT E12	Biomaterials	PE	3	3	0	0	3
3.	50 PNT E13	Solid State of Nanotechnology	PE	3	3	0	0	3

SEMESTER II, ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 PNT E21	Nanobiotechnology	PE	3	3	0	0	3
2.	50 PNT E22	Drug Delivery	PE	3	3	0	0	3
3.	50 PNT E23	Nanotechnology in Energy Conversion and Storage	PE	3	3	0	0	3

SEMESTER II, ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 PNT E31	Nano materials in Energy Storage Devices	PE	3	3	0	0	3
2.	50 PNT E32	Nanotechnology in Automobiles	PE	3	3	0	0	3
3.	50 PNT E33	Nanodevices	PE	3	3	0	0	3

SEMESTER III, ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 PNT E41	Corrosion Engineering	PE	3	3	0	0	3
2.	50 PNT E42	Social Impact of Nanotechnology	PE	3	3	0	0	3
3.	50 PNT E43	Computer Modeling and Simulation	PE	3	3	0	0	3

SEMESTER III, ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 PNT E51	Nanosafety and Environmental Issues	PE	3	3	0	0	3
2.	50 PNT E52	Intellectual Property Rights	PE	3	3	0	0	3
3.	50 PNT E53	Research Methodology - science and humanities	PE	3	3	0	0	3

OPEN ELECTIVES I / II / III / IV (OE)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	-	-	-	-	-	-	1	-

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 PNT 3P1	Project Work - Phase I	EEC	12	0	0	12	7
2.	50 PNT 4P1	Project Work - Phase II	EEC	50	0	0	50	16

SUMMARY

C No	Catogory			Cr	edits Pe	er Seme	ster			Total	Percentage
S.No.	Category		II	III	IV	V	VI	VII	VIII	Credits	%
1.	HS	-	-	-	-	-	-	-	-	-	-
2.	BS	4	-	-	-	-	-	-	-	4	5.63
3.	ES	-	-	-	-	-	-	-	-	-	-
4.	PC	15	14	-	-	-	-	-	-	29	40.84
5.	PE	3	6	6	-	-	-	-	-	15	21.12
6.	OE	-	-	-	-	-	-	-	-	-	-
7.	EEC	-	-	7	16	-	-	-	-	23	32.39
8.	AT	-	AT I	AT II	-	-	-	-	-	-	-
	Γotal	22	20	13	16	-	-	-	-	71	100

K.S.Ra	angasamy College of Technology	- Auton	omous	Regulation	on		R 2018			
Department	Nano Science and Technology	Programme Code & Name Techn					1.Tech – Nano Science and logy			
	Semester I									
Course Code	Course Name	eek	Credit	M	Maximum Marks					
Course Code	Course Name	L	Т	Р	С	CA	ES	Total		
50 PNT101	ADVANCED NUMERICAL METHODS			0	4	50	50	100		
With the present development of the computer technology, it is necessary to develop efficient algorithms for solving problems in science, engineering and technology. This course gives a complete procedure for solving different kinds of problems that occur in engineering numerically. At the end of the course the students would be acquainted with the basic concepts in numerical methods and their uses.								se gives a nerically. At		

SOLUTION OF EQUATION

Bisection Method – Newton Raphsan method – Method of False Position – Iteration Method – Secant Method – Muller's Method – Graeffe's Root-Squaring Method – Horner's Method.

SOLUTION OF EQUATION AND EIGEN VALUE PROBLEM

Solution of Linear Systems: Matrix Inversion Method, Gauss Elimination Method, Gauss-Jordan Method, Gauss-Seidal iteration Method, Solution of Tridiagonal Systems, Eigen value Problems: Eigen values of a symmetric Tridiagonal Matrix, Householder Method, QR Method.

NUMERICAL SOLUTION OF ORDINARY AND PARTIAL DIFFERENTIAL EQUATION

Picard's Method of Successive approximations – Euler's Method – Modified Euler's Method -Runge-Kutta Methods (Fourth order only). Boundary Value Problems: Finite Difference Method, Shooting Method, Cubic Spline Method. Poisson Equation – Laplace's Equation: Jacobi's Method, Gauss-Seidal Method, Parabolic Equations and Hyperbolic Equations.

NUMERICAL INTEGRATION

Numerical integrations by Trapezoidal and Simpson's 1/3 and 3/8 rules, Two and three point Gaussian quadrature formula, Romberg's Method – Double intergrals using trapezoidal and Simpson's rules. Finite Element Method: Rayleigh-Ritz Method, Galerkin Method.

ANOVA AND SIMULATION

Testing of hypothesis for small samples using t-test, F-test, χ^2 -test for independence of attributes and Goodness of fit. ANOVA : One way classification – Two way classification – Latin Square Design.

Simulation: Basic concepts of simulation – Advantages and limitations – Monte-Carlo Techniques – Uses of simulation.

Ref	erence(s):
1	S.S. Sastry, "Introductory Methods of Numerical Analysis", Prentice-Hall of India, PVT. LTD,
2	M.K. Jain, S.R.K. Iyenkar and R.K. Jain, "Numerical Methods Problems and Solutions", New Age International Limited Wiley Eastern Limited, New Delhi, 1995.
3	Gupta, S.C, and Kapoor, J.N., "Fundamentals of Mathematical Statistics", Sultan Chand&sons, Ninth Edition, New Delhi, 2002.
4	Kanti Swarup, P.K.Gupta, Manmohan "Operation Research",Sultan Chand & Sons, New Delhi, 2004.
5	Kandasamy.P, Thilakavathy.K and Gunavathy.K, "Numerical methods", (Revised Edition) S.Chand and company, New Delhi, 2005.
6	V.Sundaresan, K.S.Ganapathy Subramanian, K.Ganesan, "Resource Management Techniques (Operations Research)" A.R.Publications, Chennai, 2009.

K.S. R	K.S. Rangasamy College of Technology - Autonomous Regulation								18
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology			
		S	emester	1					
Course Code	Course Name		Hours / Week			Credit	М	aximum N	Marks
Course Code	Course Marrie	L	Т	Р	С	CA	ES	Total	
50 PNT 102	QUANTUM MECHANICS		3	2	0	4	50	50	100
Objective(s)	Impart the basic knowledge about the Quantum Mechanics and understand the various parameters like operator, Eigen function, angular momentum, the variation principles and approximate methods. To Analyze the Quantum Mechanics and apply the nanostructured materials.								

Limitation of classical mechanics - Plank's quantum hypothesis - Einstein's photoelectric effect - Wave nature of particles - Heisenberg Uncertainty principle - Schrodinger's time dependent and independent wave equations - Particle in a one dimensional box - Harmonic oscillator.

WAVE MECHANICS

Linear operator - Hermitian operator - Linear harmonic oscillator - Operator method — Postulates of quantum mechanics - Equations in motion - Ehrenfests theorem - Hydrogen atom - Hydrogen orbitals - Matrix representation of wave functions.

OPERATORS AND COMPUTATION LAWS

Linear momentum operator – Properties of Hermitian operator – Angular momentum operators – Ladder operators – Parity operator – Commuting and non commuting operators – Commutation relation L_x and L_y – Commutation relation L^2 and L_x – Commutation relation L_x and L_y –

VARIATION AT PRINCIPLES

Variation at method - Ground state of hydrogen molecule - Ground state of Helium atom –Perturbation theory in non-degenerate case - First order perturbation – Harmonic perturbation - Transition to continuous states.

APPROXIMATION METHODS

Klein-Gordon equation – Charge and current densities – Inadequacy of Klein-Gordon equation – Dirac's equation for a free particle - Dirac's matrices – Properties of Dirac's matrices – Negative energy states – Hartree-Fock equation.WKB Approximations-adiabatic approximation-Sudden approximation.

Ref	erence(s):
1	G. Aruldhass, "Quantum Mechanics", Prentice Hall of India pvt. Ltd. New Delhi, 2004.
2	Kurt Gottfried,Tung-Mowyan " Quantum Mechanics Fundamentals", Springer,2003.
3	Steven Weinberg "Lectures on Quantum Mechanics" USA Cambridge University press,2013
	Ajoy Ghatak and Lokanathan "Quantum Mechanics:Theory and Applications", Kluwer Academic
4	publications,2004

K.S. Ra	ingasamy College of	Technology -	Auton	omous	Regu	lation		R 2018			
Department	Nano Science and Technology	Programme	Code	& Name	;	PNT : M.Tech – Nano Science and Technology					
Semester I											
Course Code	Course No	.m.o	Но	urs / We	eek	Credit	M	aximum I	Marks		
Course Code	Course Name		L	Т	Р	С	CA	ES	Total		
50 PNT 103	NANO STRUCTURED MATERIALS			0	0	3	50	50	100		
	Impart the basic kr	nowledge on na	anoscie	nce and	d techr	nology.					
	Analyze the various process techniques available for the processing of nanostructured materials.										
Objective(s)	Impart knowledge on the exotic properties of nanostructured materials at their nanoscale lengths.										
	Acquire the knowledge above the various nanoparticles process methods and their skills.										
	Study there active	merits of vario	us proc	ess tecl	hnique	es.					

Introduction to Nanoscale materials - Atomic & molecular size. Scientific revolutions-nanotechnology application area. Scope of Nanoscience and technology.

NANOSTRUCTURES AND DIMENSIONS

Classification of nanostructures-zero, one, two and three dimensional nanostructures. Size Dependency in Nanostructures-Quantum size effects in nanostructures. Chemistry of tailored nano shapes.

METHODS OF PREPARATION

Classification - Synthesis of nanomaterials-Top down and bottom up approach. Method of nanomaterials preparation – Wet chemical (Sol gel) synthesis-Mechanical Milling.

NANOMATERIAL PROPERTIES

Surface to volume ratio. Surface properties of nanoparticles. Size dependent Mechanical, optical, electronic, magnetic, thermal and chemical properties. Size and shape dependent absorption spectra. Carbon nanotubesphysical properties and applications.

APPLICATIONS

Nano structured materials – applications – Anti Corrosive - Coating – Solar Cell -Types - Thermal Energy storage.

Refe	erence(s):
1	Mick Wilson, KamaliKannargare., Geoff Smith, "Nano technology: Basic Science and Emerging
'	technologies", Overseas Press, 2005.
2	Charles P. Poole, Frank J. Owens, "Introduction to Nanotechnology", Wiley Interscience, 2003.
2	Mark A. Ratner, Daniel Ratner, "Nanotechnology: A gentle introduction to the next Big Idea", Prentice Hall
3	P7R:1 st Edition, 2002.
4	T. Pradeep, "Nano the Essential Nanoscience and Nanotechnology", Tata McGraw hill, 2007.

K.S. Raı	ngasamy College of	Technology	- Auton	omous	Regu	lation		R 2018		
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology				
	Semester I									
Course Code	mo	Hou	rs / We	ek	Credit	М	Maximum Marks			
Course Code	Course Na	L	T	Р	С	CA	ES	Total		
50 PNT 104	ADVANCED MATE	RIALS	3	0	0	3	50	50	100	
Objective(s)	 Analyze the basic ideas about the materials and impart the knowledge about the properties and different applications of dielectric materials magnetic, semiconducting superconducting materials. Impart the knowledge about the new materials like smart materials, shape memory alloys and acquire the various physico-chemical properties of different materials. 									

CRYSTALLOGRAPHY

crystalline solids-amorphous solids-lattice-basis-unit cell-crystallographic axes-primitives-lattice parameters-primitive cell -seven crystal systems - miller indices -crystal structure of materials- simple cubic - body centered cubic-face centered cubic – hexagonal structure-types of symmetry- bonding in solids-primary bonds- secondary bonds- imperfections-point, line, surface & volume – color centers

DIELECTRIC MATERIALS

Basic concepts of dielectric materials-dielectric properties - types of polarization - classification of dielectric materials based on temperature - Claussius-Mosotti relation Dielectric Constant and Dielectric Loss - breakdown mechanism - ferroelectric material -multiferroics - applications.

MAGNETIC MATERIALS

Dia-para-ferro and anti ferromagnetic materials and its properties -Ferrites-hard and soft magnetic materials-ferrites-structural and its properties-magnetic optical recording materials-magnetic computer data storage - NMR imaging-MR imaging-storage-memory-recording and imaging

SEMICONDUCTING MATERIALS

Preparation of Semiconducting Materials-Band Gap-Direct, Indirect Band gap-Semiconductor Band Gaps-P-type-N-type –Fermi level-Fermidirac - Brillouin Zone-Advanced Semiconducting Materials-Functionalization of Charge –Hall effect-Charge Carriers

SMART MATERIALS

Shape memory alloys-Phase Transformations - Properties of SMA – classification of metal alloys-Ferrous alloys-Phase diagram-Titanium alloys- Nonferrous alloys - applications – Micro valve & pump. Metallic glasses – preparation – properties – applications.

Ref	Reference(s):							
1	V. Rajendran, Materials Science, Tata McGraw Hill, New Delhi, 2011.							
2	A.J. Dekker, Solid state Physics, Macmillan India Ltd, New Delhi, 2012.							
3	S.O. Pillai, Solid state Physics, New Age International(p)Ltd, 2007 Revised Edition							
4	C. Kittle, Introduction to Solid State Physics 8 th Edition, Wiley publishers, 2005.							

K.S. Ran	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018											
Department	Technology			mme Code & PNT : M.Te Name				ech – Nano Science and Technology				
Semester I												
Course Code	Course Name		Hours / Week			Credit	Maximum Marks					
Course Code	Course Name		L	Т	Р	С	CA	ES	Total			
50 PNT 105	SYNTHESIS OF NANOSTRUCTURED MATERIALS	3	0	0	3	50	50	100				
Objective(s) Impart the knowledge about the synthesis of nano structured materials. Comprehend the basic ideas about the materials synthesis through different methods like chemical, thin film, mechanical and etching methods. To analysis the carbon based nano structured materials preparation.												

CHEMICAL METHODS

Sol-gel synthesis –different types of coatings -Spin coating- Self-assembly- (Periodic) - starting points for self-assembly- Directed self-assembly using conventional lithography-Template self-assembly-Vapor liquid solid growth- Langmuir-Blodgett films – DNA self-assembly.

CVD AND PVD METHODS

CVD Chemical vapor deposition –Atmospheric pressure CVD (APCVD) – Low pressure CVD (LPCVD) - Plasma enhanced chemical vapor deposition (PECVD) - The HiPCOmethod - Photo-enhanced chemical vapor deposition (PHCVD)- LCVD Laser–InducedCVD. Physical vapor deposition- Sputter technologies- Diode sputtering - Magnetron sputtering- Ion beam (sputter) deposition, ion implantation and ion assisted deposition – Cathodicarc deposition - Pulsed laser deposition.

MECHANICAL METHODS

Micromilling - Microdrilling - Microgrinding processes - EDM micro machining - laser micro/nanomachining - Dry etching. isotropic anisotropic etching - Reactive ion etching- Magnetically enhanced RIE- Ion beam etching.

ETCHING TECHNIQUES

Wet etching of silicon - Isotropic etching - Anisotropic etching - Electrochemical etching - Vapor phase etching - Dry etching- Other etching techniques. Wet chemical etching.

CARBON BASED NANOMATERIALS

Synthesis method—carbon nanotube – nanorods – nanosprings – rings –nanosheets –other structures - chemical routes for nanotubes and nanorods – lon beam induced nanostructures.

	Total hours to be taught: 40									
Re	Reference(s):									
1	M. J. Jackson, "Micro fabrication and Nanomanufacturing", CRC Press, 2005.									
2	P.Rai-Choudhury, "Handbook of Micro lithography, Micro machining, and Microfabrication", Vol. 2, SPIE Press, 1997.									
3	G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College Press, 2004									
4	W.T.S. Huck, "Nanoscale Assembly: Chemical Techniques (Nanostructure Scienceand Technology)", Springer 2006									

K.S. R	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018										
Department	Nano Science and Technology	Programme Code & Name			PN	PNT : M.Tech – Nano Science and Technology					
	Semester I										
Course Code	Course Name			ours / We	ek Credit		Maximum Marks				
Course Code				Т	Р	С	CA	ES	Total		
50 PNT 1P1	SYNTHESIS AND CI OF NANOMATERIA	HARACTERISATION LS LABORATORY-I	0	0	3	2	60	40	100		
Objective(s) • To analysis the different methods and technical skills required to prepare the nanoparticles and characterization techniques								cles			

1. Particles: Metal Oxide Nanoparticles (TiO₂/ZnO)

Synthesis Method: Sol-Gel

Characterisation Technique: XRD studies

2. Particles: Metal Oxide Nanoparticles (SiO₂/MgO)

Synthesis Method: Ball mill

Characterisation Technique: Particle size Distribution

3. Particles: Metal Oxide Nanoparticles (CuO/ZrO₂)

Synthesis Method: Sonication

Characterisation Technique: FTIR studies

4. Particles: Metal Nanoparticles (Ag/Au)

Synthesis Method: Chemical reduction

Characterisation Technique: EDAX analysis

5. Particles: Magnetite Nanoparticles (Fe₂O₃/Ni/Fe₂TiO₃)

Synthesis Method: Co-Precipitation

Characterisation Technique: VSM studies

6. Particles: Green Nanoparticles (Cu/SiO₂/Ag)

Synthesis Method: Extraction/Reduction

Characterisation Technique: UV and PL studies and band gap calculation

7. Particles: Nanocomposites (Al₂O₃-ZrO₂/TiO₂-SiO₂)

Synthesis Method: Wet chemical

Characterisation Technique: XRF studies

8. Particles: Metal Oxide nanoparticles (ZnO/MnO₂)

Synthesis Method: Spray Pyrolysis

Characterisation Technique: BET techniques

9. Particles: Nano Biomaterials (Bioactive glass (SiO₂/CaO/P₂O₅)/HAp)

Synthesis Method: Hydrothermal Characterisation Technique: Zeta potential studies

10. Particles: Polymeric Nanofibers (PVA/MgO, TiO₂)

Synthesis Method: Electro spinning

Characterisation Technique: TEM/HRTEM analysis

11. Particles: Metal/Metal oxide Nanoparticles (Ag/TiO₂/ZnO)

Synthesis Method: Precipitation

Characterisation Technique: Antimicrobial studies

12. Particles: Perovskite Nanoparticles (BaTiO₃/CaMgTiO₃)

Synthesis Method: Solid state preparation

Characterisation Technique: Online Ultrasonics studies

Total Hrs	45

K.S. Ran	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018											
Department	Nano Science and Technology	Programme Coo Name	de &		PNT : M.Tech – Nano Science and Technology							
	Semester II											
Course Code	Course Name			Hours / Week			Maximum Marks					
Course Code				T	Р	С	CA	ES	Total			
50 PNT 201	CHARACTERISATION TECHNIQUES	ON	3	0	0	3	50	50	100			
Objective(s)	 To analysis the relative methods of various characterisation techniques and the basic knowledge about the different characterisation techniques. Impart the knowledge about the characterisation techniques and study each and every technique and acquire the knowledge to use the technique. 											

MICROSCOPY

Optical microscopy – Confocal microscopy - Electron Microscopy: Scanning electron microscopy – Transmission electron microscopy – Scanning tunneling electron microscopy – Image collection in electron microscopes – Environmental transmission electron microscopy – In-situ measurements.

SCANNING PROBE MICROSCOPY

Scanning Probe microscopy – Atomic manipulations – Atomic force microscopy – Scanning probe lithography – Scanning near field optical microscopy – Secondary ion mass (SIMS) spectrometry.

SPECTROSCOPY

Optical absorption and emission spectroscopy – Basics - AAS – ICP OES – Infrared surface spectroscopy – Raman spectroscopy – Brillouin spectroscopy – Dynamic Light Scattering (DLS) – NMR Spectroscopy – Thermo gravimetric Analysis (TGA) – Differential Scanning Calorimetry (DSC) – Thermo mechanical Analysis (TMA).

MECHANICAL CHARACTERISATION

Modulus and load carrying capability of nano region/ compression - micro hardness - Fatigue - Abrasion and wear resistance - Super plasticity - Nano indentation - Nano tribology - Nano tribometre - Surface Force apparatus - Quartz crystal microbalance - Friction force microscope.

STRUCTURAL CHARACTERISATION

X- ray diffraction – Scherer formula – texturing - Micro strain macromolecular crystallography using synchrotron radiation – electron and neutron diffraction - Photoluminescence - Thermo luminescence – X-ray absorption Fine Structure (XAFS) – Extended X- ray absorption fine structure (EXAFS) – Electron spectroscopy for chemical Analysis (ESCA).

	rotal nours to be taught . 60
Ref	erence(s) :
1	T.Pradeep, "Nano: The Essentials", Tata McGraw Hill, New Delhi, 2007.
2	Charles P Poole Jr and Frank J Ownes, "Introduction to Nanotechnology", John Wiley Sons, 2003.
3	Mick Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons, BurkarRaguse, "Nanotechnology: Basic sciences and emerging technologies", Overseas Press, 2005.
4	Willard, Merritt, Dean, Settle "Instrumental Methods of Analysis", CBS PUBS & DISTS New Delhi 2007.

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018										
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology				
Semester II										
Course Code	Course Name		Hours / Week			Credit	Maximum Marks			
Course Code			L	Т	Р	С	CA	ES	Total	
50 PNT 202	NANOCOMPOSITES		3	0	0	3	50	50	100	
To perceive the science and technology behind the nanocomposites. Acquire the knowledge on nanocomposite properties, features and processing of various nanocomposites. Impart knowledge on various testing methods, applications and recycling.										

Significance of composites, functions of matrix and reinforcement in composites, Classification of compositesparticle reinforced-fibre reinforced-structural composite, Polymer, metal and ceramic matrix composites. Applications in automobiles-machine tools-aerospace and sports equipments.

PROCESSING OF NANOCOMPOSITES

Viscosity - Types of flow - Non-Newtonian Flow -Low-viscosity processing - Solvent processing - Particle behavior - In situ polymerization -Post-Forming - Melt, high -shear, and direct processing -Melting and softening - Melt processes with small shears or Low-shear rates flow - Melt processes with large deformations or high-shear rates - Thermo-kinetic processes.

PROPERTIES OF NANOCOMPOSITES

Physics of modulus – Continuum measurements – Yield – Fracture – Rubbery elasticity and visco elasticity – Surface mechanical properties –Diffusion and permeability – Features of nanocomposites – basics of polymer nanocomposites – Nano reinforcements – Matrix materials – Hazards of particles.

TESTING AND VALIDATION

Characterization – Experiment design – Sample preparation – Imaging –Structural characterization – Scales in nanocomposites – Texture – Electromagnetic energy –Visualization – Physicochemical analysis – Characterization of physical properties –Identification – Mechanical – Surface mechanical – Exposure – Barrier properties – Recipes and standards.

APPLICATIONS AND RECYCLING OFNANOCOMPOSITES

Nanocomposites — Optical, Structural Applications — Nanoparticulate Systems With Organic Matrices — Applications — Biodegradable Protein — Ceramics — Food Preservatives - Dental Materials - Automatic Components - Corrosion Protection - Properties And Property Changes Over Virgin Material - Contaminants - Role Of Contaminants In Property Change. Future Regulatory Issues On Polymer Nanocomposites Based On solid waste management.

Total hours to be taught: 45

Reference(s):

- Thomas E. Twardowski, Introduction to Nanocomposite Materials Properties, Processing, Characterization, DesTech Publications, April 2007
- 2 Klaus Friedrich, StoykoFakivov, Zhony Shang, Polymer Composites from Nano toMacro scale, Springer, USA, 2005
- 3 | Ray Smith, Biodegradable polymers for Industrial Applications, CRC Press, 2005
- 4 ManasChandar and Salil K. Roy, Plastics technology handbook, CRC Press, 2006

K.S. Ran	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018											
Department			mme Code & Name			PNT : M.Tech – Nano Science and Technology						
	Semester II											
Course Code	Course Name		Hours / Week			Credit		Maximum Marks				
Course Code			L	Т	Р	С	CA	ES	Total			
50 PNT 203	NANOSENSORS AND TRANSDUCERS		3	0	0	3	50	50	100			
Impart knowledge about the nanosensors, trancducers and their application. To analysis the basic about nanosensors and impart the knowledge for the different sensor application techniques.												

SENSORS AND THEIR CHARACTERISTICS

Active and Passive sensors – Static characteristic - Accuracy, offset and linearity – Dynamic characteristics - First and second order sensors – Physical effects involved in signal transduction- Photoelectric effect – Photoluminescence effect – Electroluminescence effect – chemiluminescence effect – Piezoelectric effect – Pyroelectric effect.

NANO BASED INORGANIC SENSORS

Density of states (DOS) – DOS IN 3D, 2D, 1D and 0D nanomaterials – one dimensional gas sensors:- gas sensing with nanostructured thin films – absorption on surfaces – metal oxide modifications by additives – surface modifications – nano optical sensors – nano mechanical sensors – plasmon resonance sensors.

TRANSDUCERS

Conductometric and capacitive transducers – optical waveguide based transducers – optical fiber based transducers – Interferometric optical transducers – surface plasmon resonance transducers – electrochemical transducers – soild state transducers – pn diodes or bipolar junction based transducers – schottky diode based transducers – Cantilever based tansducers.

GAS AND THERMAL SENSORS

Criteria for the choice of materials, Experimental aspects – materials, properties - measurement of gas sensing property, sensitivity - Discussion of sensors for various gases - Gas sensors based on semiconductor devices - Thermal energy sensors - temperature sensors - heat sensors- Optical and radiation sensors.

APPLICATIONS

Cantilever array sensors -Cantilever sensors for diagnosis of diabetes mellitus and cancer diagnosis -Nanotube based sensors for DNA detection and capnography -Nanowire based sensors and single viruses - detection of biomolecules – Night vision systems.

Total hours to be taught: 60

Reference(s): 1 K. Goser, P. Glosekotter and J. Dienstuhl, "Nanoelectronics and Nanosystems-From Transistors to Molecular Quantum Devices", Springer, 2004. 2 Herve Rigneault, Jean-Michel Lourtioz, Claude Delalande, Ariel Levenson, "Nanophotonics", Wiley-IST - 2006. 3 W.R.Fahrner, "Nanotechnology and Nanoelectronics – Materials, Devices and Measurement Techniques" Springer, 2006. 4 K.E. Drexler, "Nano systems", Wiley India, 2010.

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018											
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology					
Semester II											
Course Code	Course Name		Hours / Week			Credit	Maximum Marks				
Course Code			L	Т	Р	С	CA	ES	Total		
50 PNT 204	NANOLITHOGRAPHY		3	0	0	3	50	50	100		
Objective(s) To interpret the basic about nanolithography and impart the knowledge for the different lithography techniques. Impart knowledge about the lithography application of different industries and study the use of AFM in nano lithography											

BASICS IN LITHOGRAPHY

Lithography – Printing – Chemical process – Refinements – The modern process – Optical, micro, nanolithography – Lithography in artistic medium – Nanometer design for electronic circuits – Applications of nanolithography.

OPTICAL LITHOGRAPHY

Optical lithography – Light sources – Photo mask and alignment - Resolution in projection systems – Positive and negative photo resists – Ultraviolet lithography – X ray Lithography - Proximity printing – X ray masks – X ray sources – Synchrotron radiation – X ray projection – X ray resists – holographic lithography.

ION BEAM LITHOGRAPHY

Ion beam lithography - Focused ion beam - Point sources of ion - Ion column - Beam writing - Masked ion beam lithography - Ion projection lithography - Electron lithography - Electron optics - Raster scan and vector scan - Electron proximity / Projection printing - Electron resists - Electron beam applications.

MICRO-NANO LITHOGRAPHY

Microlithography – Microchips - Immersion lithography – Semiconductor processing – MEMS design - Nanolithography - Nanosphere lithography – Molecular self-assembly – Nanoimprint lithography - Dip-pen nanolithography - Soft lithography - Stereo - lithography - Nanoscale 3D shapes – NEMS design.

NANOLITHOGRAPHY TOOLS

Tools for nanolithography - Molecular manipulation by STM and AFM - Nanopattern synthesis – Nano scratching – Resist and imaging layers.

Total hours to be taught: 45

Reference(s): W.R.Fahrner, "Nanotechnology and Nanoelectronics – Materials, Devices, Measurement Techniques", Springer, 2006. David G.Bucknall, "Nanolithography and Patterning techniques in microelectronics", CRC Press, 2005. James R. Sheats, Bruce W. Smith, "Microlithography: Sciences and Technology", CRC Press, 1998. M.Gentili, Carlo Giovannella, Stefano Selci, "Nanolithography: A Borderland between STM, EB, IB, and X-Ray Lithographies", 1st edition, Springer, 1994.

	K.S.Rangasamy College of Technology – Autonomous R2018												
	50 AT 004 Value Education												
	Common to all Branches												
Semester	Н	lours / Week		Total	Credit	M	Maximum Marks						
Semester	L	T	Р	hrs	С	CA	ES	Total					
II	3	0	0	45	0	100	-	100					
Objectives		od values in	students										
Course Outcomes													

- Values and self-development –Social values and individual attitudes. Work ethics, Indian
- vision of humanism.
- Moral and non- moral valuation. Standards and principles.
- Value judgements
- Importance of cultivation of values.
- Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness.
- Honesty, Humanity. Power of faith, National Unity.
- · Patriotism. Love for nature, Discipline
- Personality and Behavior Development Soul and Scientific attitude. Positive Thinking.
- Integrity and discipline.
- Punctuality, Love and Kindness.
- Avoid fault Thinking.
- Free from anger, Dignity of labour.
- Universal brotherhood and religious tolerance.
- True friendship.
- Happiness Vs suffering, love for truth.
- Aware of self-destructive habits.
- Association and Cooperation.
- Doing best for saving nature
- Character and Competence -Holy books vs Blind faith.
- Self-management and Good health.
- Science of reincarnation.
- Equality, Non violence, Humility, Role of Women.
- All religions and same message.
- Mind your Mind, Self-control.
- Honesty, Studying effectively

Reference:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

K.S. Ran	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018											
Department	Nano Science and Technology	Programme Code & Name			PNT	PNT : M.Tech – Nano Science and Technology						
Semester II												
Course Code	Course Name			s / We	eek	Cre dit	М	Maximum Marks				
		L	Т	Р	С	CA	ES	Total				
50 PNT 2P1	NANO DEVICE FA SIMULATION LAB		0	0	3	2	60	40	100			
Objective(s)	jective(s) • To analysis the different device fabrication techniques and testing to acquire knowledge on the different devices using nanostructured materials and simulation software.											

1. Material: Nano coating (TiO₂/ZrO₂)

Techniques: Ultrasonic spray coating

Characterisation: FTIR-ATR and Fire redundant testing

2. Material: Thin film (Al₂O₃/ZrO₂)

Techniques: Dip coating using nanosol Characterisation: SEM/HRSEM analysis

3. Material: Thin film (SiO₂/Ag/Au) Techniques: Spin coating Characterisation: AFM studies

4. Material: Nano coating (Bioactive glass (SiO₂/CaO/P₂O₅)/ceramics)

Techniques: Electro deposition

Characterisation: Nanoindentation testing

5. Material: Polymeric Scaffolds Techniques: Electro Spinning

Characterisation: Physico-Chemical studies

- 6. Electrochemical studies CV, charge/discharge, impedance and corrosion studies (MnO₂)
- 7. Design and fabrication of Nano Sensor and testing
- 8. Design and fabrication of Solar cell testing and IV measurements
- 9. Image analysis AFM offline software and SEM/TEM images
- 10. Design and simulation of sensors (Temperature, Pressure, Gas)
- 11. Design and simulation of solar cell
- 12. Design and simulation of batteries

Any 9 experiments out of 12 experiments.

Total Hrs	45

K.S. Ra	ingasamy Colle					Regu				2018
Department	Nano Scieno Technolo		Progi	ramme (Name			PNT : N		– Nano S chnology	cience and
				Semest						
Course Code	Con	rse Name		Hou	rs / We	ek	Credit		Maximum Mar	
				L	Т	Р	С	CA	ES	Total
50 PNT 2P2	TECHNICAL PREPARAT PRESENTA	ION AND	•	0	0	2	0	100	00	100
Objective(s)		e exposure ournals and e the tech	d confere	nce prod	eeding	S.				
Methodology	 By n area The publ The last Usin follo The end The page remains 	 area to the student. The students have to refer the Journals and conference proceedings and collect the published literature. The student is exposed to collect at least 20 such Research papers published in the last 5 years. Using OHP/Power point, the student has to make presentation for 15-20 minutes followed by 10 minutes discussion. The student has make two presentations, one at the middle and the other near the end of the semester. 								
	Week					Acti	vity			
	I	Allotment	of Facul	ty Guide	by the	HOD				
	II	Finalizing	the topic	with the	approv	al of	Faculty G	Guide		
Execution	III-IV	Collection	n of Tech	nical pap	ers					
	V – VI	Mid seme	ester pres	entation						
	VII – VIII	Report w	riting							
	IX	Report Si	ubmissior	า						
	X-XI	Final tech	nical pre	sentatio	n					
	• 100 %	Continuou	s Assess	ment						
	• 2 Hrs/w	veek								
			onent						ghtage	
Evaluation	Phase – I Prese			25 %						
	Phase – II Pres								5 %	
	Report prepara		ubmissio	n					0 %	
Ì	Final presentati	ion						2	0 %	
	=								000/	

Total

100%

	K.S. Rangasamy College of Technology – Autonomous R 2018													
	50 AT 002 Disaster Management													
Common to all Branches														
Semester Hours / Week Total Credit Maximum Mar														
Semester	L T P hrs C CA ES	Total												
III	3 0 0 45 50 -													
Objectives	 Learn to demonstrate a critical understanding of key concepts in disaster risk reduce humanitarian response. Critically evaluate disaster risk reduction and humanitarian response policy and pra multiple perspectives. Develop an understanding of standards of humanitarian response and practical relesspecific types of disasters and conflict situations. Critically understand the strengths and weaknesses of disaster management approplanning and programming in different countries, particularly their home country countries they work in 	ctice from vance in aches,												

Introduction

Disaster: Definition, Factors And Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Repercussions of Disasters and Hazards:

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts.

Disaster Prone Areas in India

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides and Avalanches; Areas Prone to Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases and Epidemics

Disaster Preparedness and Management

Preparedness: Monitoring of Phenomena Triggering A Disaster Or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

Risk Assessment

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Disaster Mitigation

Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

Reference(s):

- R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2 Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi

	K.	S. Rangasa		of Technology		ousR2018						
	50 AT 009 - Research Ethics Common to all Branches											
				on to all Branc		T						
Semester	r F	lours / Weel		Total hrs	Credit		aximum Marks					
	L	<u>T</u>	P		C	CA	ES	Total				
III	7 . Analyza t	0	0	15	0	100	-	100				
Objective(s	Analyze the ethical practices in research Familiarize about research and documentation Enlighten about collaborative research Aware about publication ethics											
	Course Outcomes At the end of the course, the student will be able to CO1: Comprehend the importance of ethical practices in research. CO2: Distinguish ethical practices from unethical practices in Research Design. CO3: Understand ethical practices in conducting research and its dissemination.											
each topic b shall not de	nours given agains pased on importan pend on the numb	nce and depoer of hours	th of covera indicated.									
Values Und	n to Ethical Prac erlying Research esearch Design	Integrity; Fra	amework for		: Research Pi	ractices		[2]				
Planning; Re	esearch Question xecution, Docume	s and Docur	mentation ; L	iterature Review				[5]				
	ve Research & If n and Authorship ion		Credits; Inte	llectual Property				[5]				
	f the Right Medi	um for Pub	lication; Cho	oosing the Righ	t Journal for	Publication;						
Tard Dardy	-1-						Total Hours	15				
Text Book(
(<u>https</u>	ance Document: (s://www.ugc.ac.in/	/e-book/grap	29092020/	mobile/index.htn	<u>nl</u>)	•		•				
(<u>https</u>	Regulation: Pro s://www.ugc.ac.in/						HEI's, Regulat	ion 2018				
Reference(s):											
	lidhar, K., Ghosh, : 978-81-939482-						and Governan	ce.				
	2. Griffiths, P. A., McCormick Adams, R., Albertis, B. M., Blout, E. R., Browder, F. E., Challoner, M. D., & Stine, D. D. (1995). On being a scientist: responsible conduct in research. Washington (DC): National Academy											
	en D. Krause (200					·						
	y Lowry (2016) Cl ersity of Michigan)		sing sources	: A guide to aca	demic resear	ch (Open Tex	tbook Library,					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				3						3					
CO2				3						3					
CO3				3			2	2		3					

K.S. Ra	ngasamy Colle					Regul	ation		R	2018	
Department			_	Name			PNT : N				
Department Nano Science and Technology Programme Code & PNT : M.Tech - Nano Science and Technology Semester III											
Course Code	Cour	rse Name		Ηοι	ırs / We	ek	Credit		Maximu	m Marks	
	_			L	T	Р		CA	ES	Total	
50 PNT 3P1				•							
Objective(s)	areas of nai	notechnolo	ogy.							udents to new	
Methodology	 By mu to the The st publish The st last 5 y Using 10 mir The st of the The st page A remark 	 By mutual discussions, the faculty guide will assign a topic in the general / subject area to the student. The students have to refer the Journals and conference proceedings and collect the published literature. The student is exposed to collect at least 25 such Research papers published in the last 5 years. Using Power point, the student has to make presentation for 15-20 minutes followed by 10 minutes discussion. The student has make two presentations, one at the middle and the other near the end of the semester. 									
	Week					Activ	vity				
	I		of Faculty								
	II		the topic			/al of I	aculty G	iuide/ Ir	ndustrial v	visit	
Execution	III-IV		n of Scient								
	V – VI	Mid seme	ester prese	entation							
	VII – VIII	Report w	•								
	IX	Report S	ubmission								
	X-XI	Final pre	sentation								
		Continuou eek and 2		nent							
		•	onent				,		Weightage		
Evaluation	Phase – I Prese	entation						2	25 %		
	Phase – II Pres	entation				25 %					
	Report prepara	tion and S	ubmission					(30 %		
	Final presentati	ion						2	20 %		
1	<u> </u>										

Total

100%

K.S. Ra	ngasamy Colle	ge of Tec	hnology -	Autono	omous	Regul	ation		R	2018		
Department		Nano Science and Programme Code & PNT : M.Tech – Nano Science and Technology										
			5	Semeste	er IV							
Course Code	e Co	urse Name	۵	Ηοι	ırs / We	ek	Credit		Maximu	m Marks		
Course Cour				L	T	Р	С	CA	ES	Total		
50 PNT 4P1	PROJECT	WORK - P	HASE II	0	0	50	16	50	50	100		
Objective(s)	To provide	the stude de exposur a scientific	e to the st	udents	to new	areas			gy.			
Methodology	are The public ren	 The students have to refer the Journals and conference proceedings and collect the published literature. The student is exposed to collect at least 50 such Research papers published in the last 5 years. Using Power point, the student has to make presentation for 15-20 minutes followed by 10 minutes discussion. The student has make two presentations, one at the middle and the other near the end of the semester. 										
	Week			-		Activ	vitv					
	l	Allotmen	t of Faculty	/ Guide	by the							
	II	Finalizing	the topic	with the	appro	val of I	aculty G	uide				
Execution	III-IV	_	n of Scient									
	V – VI	Mid seme	ester prese	entation								
	VII – VIII	Report w	riting									
	IX	Report S	ubmission									
	X-XI	Final pre	sentation									
		Continuous /week and		ent and	50 % E	nd se	mester e	xam				
		Component							ghtage			
Evaluation	Phase – I Pres	entation						1	5 %			
	Phase – II Pres	sentation						1	5 %			
	Report prepara	ation and S	ubmission					2	0 %			
1	Viva - Voce							5	0 %			
					Tota	al		1	00%			

K.S. Rar	ngasamy College of	Technology	- Auton	omous	Regu	ulation		R 20	18
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology			
Elective I									
Course Code	Course Na	mo	Ног	ırs / We	ek	Credit	М	aximum N	/larks
Course Code	Course Na	L	Т	Р	С	CA	ES	Total	
50 PNT E11	POLYMERS IN NA TECHNOLOGY	3	0	0	3	50	50	100	
Objective(s)	With the present develop effective This course give problems that po At the end of the several kinds of	e performance s fundamenta olymers involv course the s	e for the al concep ving tech students	future trots and nological would b	rends. applically. e acq	ation for so	olving diff	ferent kind	ds of

Classification, formation of polymers - chain growth and step growth polymerisation, copolymerisation – electropolymerisation thermoplastics and thermosets – micro - nanostructures in polymers – polymer length, molecular weight, amorphous and crystalline.

PROPERTIES

Polymer morphology- Crystallinity, Tensile strength, Surface tension, Young's modulus – Phase behaviourglass transition temperature, mixing behavior, inclusion of plasticizers – types of polymerisation – mechanisms– polymer degradation.

NANOPOLYMERS

Preparation and characterisation of diblock copolymer based nano hybrids, Nanoparticles polymer ensembles; Assembly of polymer – polymer nanocomposite from polymerisation; polymers/clay nanocomposites.

NANOPOLYMERS IN ELECTRONICS

Printing and patterning techniques - nanoscale behaviour in organic transistors - transition of sensing response by organic transistor from micro to nanoscale - organic field effect transistor, organic light emitting diode. Molecular electronics.

NANOPOLYMERS IN TEXTILES

Hydrogels, synthetic and natural polymers in electrospinning - controlling parameters and morphology of nanofibers, nanoparticles - electro static self assembled nanolayer films and coating in textiles.

Ref	Reference(s):								
1	Harry R allcock, Frederick W lampe and James E Mark," Contemporary polymer chemistry", person education, 2003								
2	K cousins, keith cousins," polymers in electronics" smithers Rapra technology publishers, 2006								
3	P J Brown and K Stevens," nanofibers and nanotechnology in textiles" CRC press, 2007								
4	Frances Gardiner, Eleanor carter,: polymer electronics – a flexible technology", ismithers, 2009								

K.S. R	angasamy College of T	echnology - Auto	nom	ous R	egula	tion		R 20	18	
Department	Nano Science and Technology	Programme Code & Name PN				PNT : M.Tech – Nano Science and Technology				
Elective I										
Course Code	Course Name			ours / W	/eek	Credit	Ma	aximum l	Marks	
Course Code	Course N	Course Name			Р	С	CA	ES	Total	
50 PNT E12	BIOMATERIALS		3	0	0	3	50	50	100	
Objective(s)	ceramics, alloys, po	 To analysis the basic properties of biomaterials and the classes of biomaterials implant, ceramics, alloys, polymers, knowledge about DNA nanotechnology and understand basic Characterisation techniques. To understand the applications of biomaterials. 								

Biomaterials - first generation - second generation - general characteristics – properties – biological systems.

BIOMATERIALS

Third generation biomaterials – characteristics - biomaterials in tissue engineering - enzyme conjugate - DNA conjugates - micro array technologies - micro-nanotechnology – microfabrication - nanofabrication between biological materials - molecular machines.

BIOACTIVE AND BIODEGRADABLE MATERIALS

Bioactive materials - bioceramics for implant coating: calcium phosphates - hydroxyapatite - metals - alloys - ceramics - composites - natural composites and other biomedical alloys. Cardiovascular implants: Cardio pacemaker-blood substitutes - biopolymers - biomembranes - bioactive glasses.

TISSUE ENGINEERING

Tissue Engineering :engineering biomaterial to control cell function – building structure into engineered tissues - fibrous proteins and tissue engineering – scaffolds for tissue fabrications – materials for scaffolds - materials for hydrogel scaffolds - scaffolds fabrication technologies – nano - featured and bioactive scaffolds – nano - fiber scaffolds - nanocomposite scaffolds - scaffolds for stem cells - micro and nanopatterned scaffolds.

DNA TECHNOLOGY

Introduction - DNA nanotechnology-structural DNA assembly – DNA nano pore – arrays - DNA detection, sorting, sequencing - DNA studies by AFM - DNA based computation - PCR amplification of DNA fragments - molecular surgery of DNA - nanoscale organisation - characterisation.

Ref	Reference(s):								
1	SV Bhat, Biomaterials(2 nd Edition),Narosa Publishing House, New delhi-2005								
	C.M. Niemyer & C.A. Mirkin, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley VCH								
2	Verlag GMBH & Co, 2004.								
3	Raplph et al, "Nanoscale Technology in Biological Systems", CRC Press, 2005.								
4	Joon B. Park, R.S. Lakes, "Bio Materials: An Introduction", Birkhäuser 2 nd Edition 2006								

K.S. Rar	ngasamy College of	Technology	- Autor	omous	Regu	lation		R 20	18		
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology					
	Elective I										
Course Code	Ног	ırs / We	ek	Credit	М	Maximum Marks					
Course Code	e Course Name			Т	Р	С	CA	ES	Total		
50 PNT E13	SOLID STATE OF NANOTECHNOLOG	SY	3	0	0	3	50	50	100		
Objective(s)	To impart the basics of solid state physics and the knowledge of structure, electrical, optical, dielectric and magnetic properties of different materials to understand the nanoscience and nanotechnology.										

STRUCTURE AND IMPERFECTIONS IN CRYSTALLINE SOLIDS

Metallic crystal structures: Cubic and HCP system, packing factor, linear and planar densities, polymorphism and allotropy. Ceramic crystal structure: Radius ratio rules, AX-type, A_mX_p-type and A_mB_nX_p-type crystal structures, crystal structure from close packing of anions, ceramic density computation. Determination of crystal structure. Point defects: vacancies and self-interstitials, specification of composition. Dislocations: Burger vector. Interfacial defects- Bulk or Volume defects- Influence of imperfections and impurities on electrical, optical and mechanical properties of materials.

ELECTRICAL PROPERTIES OF SEMICONDUCTORS

Fermi Dirac distribution- Effect of temperature on Fermi Distribution function- Density of States- Sommerfeld's theory of electrical conductivity- Band theory of solids- Overlapping of energy bands- Kronig Penney model-Motion of electron in one dimension according to band theory- Brillouin zones- Band model for metals, semiconductors and insulators.

OPTICAL PROPERTIES

Optical Reflectance: Kramers-Kronig relation- Electronic interband transitions. Excitons: Frenkel excitons- Alkali halides, Molecular crystals-Weakly bound excitons- Exciton condensation into electron-hole drops.

DIELECTRIC PROPERTIES

Macroscopic description of the static dielectric constant-static electronic and ionic polarizabilities-Orientation polarization- static dielectric constant of gases- Lorentz internal field-Dielectric losses and relaxation time. Classification and properties of ferroelectrics- Ferroelectric domains-Piezoelectric materials and applications.

MAGNETIC PROPERTIES

Ferromagnetism- Domain theory- Magnetic hysteresis- Weiss molecular field theory-Heisenberg's theory-Magnetic anisotropy- Domain walls-Exchange energy- Antiferromagnetism- Ferrites: Structure and properties and applications.

Ref	Reference(s):								
1	Callister W D, "Materials Science and Engineering", Wiley Publications, 2010.								
2	James F Shackelford," Introduction to Materials Science for Engineers", Prentice Hall, 2008.								
3	Dekker A J, "Solid State Physics", Macmillan Publications, 1970.								
4	Pillai S O, "Solid State Physics", New Age International, 2005								

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018										
Department	Nano Science and Technology	Programme Code & Name				PNT : N	: M.Tech – Nano Science and Technology			
Elective II										
Course Code	Course Name		Hours / Week			Credit	redit Maximum Marl		m Marks	
Course Code			L	Т	Р	С	CA	ES	Total	
50 PNT E21	NANOBIOTECHNOLO	GY	3	0	0	3	50	50	100	
Objective(s)	To recognize the basic knowledge of Nanobiotechnology and DNA structures.									

Interdisciplinary areas of biotech and nanoscience - biological systems - cells - cellular components - nucleic acids and proteins refinement and application of instruments - to generate and manipulate nanostructured materials to basic and applied studies.

INTERPHASE SYSTEMS

Interphase systems of devices for medical implants – nano-biometrics – introduction – lipids as nano-bricks and mortar: self assembled nanolayers – nano analytical.

PROTEIN BASED NANOSTRUCTURES

Protein based nanostructures building blocks and templates – proteins as transducers and amplifiers of biomolecular recognition events – nanobioelectronic devices and polymer nanocontainers – microbial production of inorganic nanoparticles – magnetosomes.

DNA BASED NANOSTRUCTURES

DNA based nanostructures – topographic and electrostatic properties of DNA and proteins – hybrid conjugates of gold nanoparticles – DNA oligomers – use of DNA molecules in nanomechanics and computing.

APPLICATIONS

Poforonco(c):

Metal nanoparticles and nucleic acid and protein based recognition groups – application in optical detection methods – nanotechnology in agriculture – fertilizers and pesticides - natural nanocomposites – silica nanoparticles in maize growth.

Total hours to be taught: 45

K	Reference(s).									
1	CM, Niemeyer, C.A. Mirkin, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley – VCH, 2004.									
2	T. Pradeep, "Nano: The Essentials", McGraw – Hill education, 2007.									
3	Challa, S.S.R. Kumar, Josef Hormes, Carola Leuschaer,"Nanofabrication Towards Biomedical Applications, Techniques, Tools, Applications and Impact", Wiley – VCH, 2005.									

Nicholas A. Kotov, "Nanoparticle Assemblies and Superstructures", CRC, 2006.

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018										
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology				
	Elective II									
Course Code	Course Name		Hours / Week			Credit	Maximum Marks		m Marks	
Course Code			L	Т	Р	С	CA	ES	Total	
50 PNT E22	DRUG DELIVERY		3	0	0	3	50	50	100	
To provide exposure to the students on biophysics in nanotechnology. To explore the cancer therapy and drug delivery system. To study the various devices used for nanotechnology										

Modes of drug delivery, ADME hypothesis – controlled drug delivery, site specific drugs, barriers for drug targeting, passive and active targeting, strategies for site specific, time and rate controlled delivery of drugs, antibody based and metabolism - based targeting.

NANO PARTICLES IN DRUG DELIVERY

Nanoparticles surface modification, bio conjugation, pegylation, antibodies, and cell - specific targeting and controlled drug release, multi - functional gold nanoparticles for drug delivery: virus based - nanoparticles.

DENDRIMERS AS DRUG CARRIERS

Synthesis – nanoscale containers – nanoscaffold systems – gene transfection, biocompatibility polymer micelles as drug carriers, polymers nanotubes - magnetic nanoparticles as drug carriers.

LIPOSOMES FOR DRUG DELIVERY AND TARGETING

Classification and preparation of liposomal nanoparticles. liposomes for pharmaceutical and cosmetic applications, liposomal drug carriers in cancer therapy, lipid-DNA complexes, viral gene transfection systems, lipid based drug delivery systems for peptide and protein drug delivery, liposomal anticancer and antifungal agents.

APPLICATIONS

Targeted delivery through enhanced permeability and retention. folate receptors, targeting through angiogenesis, targeting to specific organs or tumor types, tumor-specific targeting: breast cancer, liver, targeting tumor vasculature for Imaging, delivery of specific anticancer agents: such as Paclitaxel, Doxorubicin,5-Fluorouracil.

Ref	Reference(s):								
1	A.M.Hillery, Drug Delivery and Targetting, , CRC Press, 2002.								
	Deepak Thassu, Michel Deleers (Editor), Yashwant Pathak (Editor), Nanoparticulate Drug Delivery								
2	Systems ISBN-10: 0849390737 ISBN-13: 9780849390739.								
3	C.W. Chan, Bio-Applications of Nanoparticles Warren ISBN: 978-0-387-76712-3.								
	Lisa Brannon-Peppas, James O. Blanchette Nanoparticle and targeted systems for cancer therapy								
4	Advanced Drug Delivery Reviews 56 (2004) 1649– 1659.								

K.S. Ra	ngasamy College of Tecl	nnology - Autono	mou	s Re	gulati	on		R	2018	
Department	Nano Science and Technology	Programme C Name	ode 8	ķ	F	PNT : N		ech – Nano Science and Technology		
Elective II										
Course	Course Name		Hours Week			Cre dit	Maximum Marks		m Marks	
Code				Т	Р	С	CA	ES	Total	
50 PNT E23	NANOTECHNOLOGY IN ENERGY CONVERSION AND STORAGE			0	0	3	50	50	100	
Objective(s)	The purpose of this co methods of converting provided with the oppo Nanotechnology and I environment.	from one form to a ortunity to explore t	noth hese	er by vario	using ous fo	Nanot rms of	technol energy	ogy. Stud , particul	dents should be arly in terms of	

Nanotechnology for sustainable energy- Energy conversion process, indirect and direct energy conversion-Materials for light emitting diodes-batteries-advanced turbines-catalytic reactors-capacitors-fuel cells. Solar energy conversion: Photovoltaic- Photoelectrochemical- Photothermal and Thermoelectric systems.

RENEWABLE ENERGY

Energy challenges, development and implementation of renewable energy technologies – nanotechnology enabled renewable energy technologies -Energy transport, conversion and storage- Nano, micro, and poly crystalline and amorphous Si for solar cells, Nano-micro Si-composite structure, various techniques of Si deposition.

BATTERIES

Basic concepts-Components & Classification of Cells and Batteries-Operation of a Cell- Energy-Specific Energy and Energy Density -Factors affecting Battery Performance-design-General Characteristics-Selection and Application -Types - Primary Batteries - Reserve Batteries & sodium beta-secondary batteries-metal-air batteries.

FUEL CELL AND FLUIDIC SYSTEMS

Hydrogen storage methods - metal hydrides - size effects - hydrogen storage capacity. Micro-fuel cell technologies, integration and performance for micro-fuel cell systems -thin film and micro fabrication methods. - novel micro fluidic devices - nano engines - driving mechanisms - power generation - micro channel battery - micro heat engine (MHE) fabrication - thermocapillary forces -Thermocapillary pumping (TCP) - piezoelectric membrane.

SOLAR ENERGY SYSTEMS

Solar cells - types of solar cells - semiconducting material- Solar cell properties and design- p-n junction photodiodes- depletion region- electron and holes transports - charge carrier generation - I-V characteristics - output power -Single junction and triple-junction solar panels - metal-semiconductor heterojunctions.

Ref	Reference(s):									
1	C.Kittel, Introduction to Solid State Physics, a chapter about Nanotechnology, Wiley,2004									
2	G.M.Chow and K.E.Gonslaves, Nanotechnology - Molecularly Designed Materials – (American chemical society)									
3	Thomas Reddy, "Linden's Handbook of Batteries", McGraw Hill Professional, USA, 2010									
4	Ogumi Z, "Battery/Energy technology (General)", The Electrochemical Society, USA 2010									

K.S. Ra	ngasamy College of Tecl	nnology - Autono	mou	s Re	gulati	ion		R	2018
Department	Nano Science and Programme Co Technology Name			ķ	PNT : M.Tech – Nano Science and Technology				
		Elective	Ш		•				
Course	Course Name			Hours Week				Maximum Marks	
Code				Т	Р	С	CA	ES	Total
50 PNT E31	PNT E31 NANOMATERIALS IN ENERGY STROAGE DEVICES			0	0	3	50	50	100
Objective(s	To study the basic Rechargeable Batte Vehicles and Emergi To Explore the appliabout cell reaction, or	ries, Super capacing application. cation of Nanoma	itors, terial	Fuels in I	Cells Energ	s and . y Stora	Advanc	ed Batte	eries for Electric

Energy Systems

Basic concepts - Components & Classification of Batteries - Primary - Secondary - Reserve - Fuel Cells Operation of a Cell - Theoretical Cell Voltage, Capacity, and Energy - Specific Energy and Energy Density of Practical Batteries - Electrochemical Principles and Reactions - Thermodynamic Background - Electrode Processes - Electroanalytical Techniques - Nanomaterials in Energy storage - Applications.

Primary Batteries

Introduction - Classification - Cell components - Performance characteristics of primary batteries Zinc/carbon batteries - lithium primary batteries - Solid electrolyte batteries - Cell reactions - Cell Construction - Performance characteristics - Nanomaterials in Specialized Primary Batteries - Peace makers and Torpedo Batteries.

Rechargeable Batteries

Introduction - Classification - Characteristics Lead- acid batteries –VRLA - Ni-MH - Lithium-Ion batteries - Cell reactions - Cell Components - Bulk and Nanomaterials in Cell Construction - Performance characteristics - Recent advancement in nano - electrode materials.

Advanced Batteries For Electric Vehicles And Emerging Applications

Zinc- Aluminium – Magnesium - Lithium-air batteries- Zinc/bromide battery - Sodium- ion Batteries- Lithium- Iron Sulfide batteries - Cell reactions - Cell Components - Cell Construction - Performance and characteristics – Application- Advantages of Nanomaterials in EV Batteries.

Fuel Cells And Supercapacitors

Types - PEMFC - SOFC - Fuel cells- characteristics and Operation of the fuel cell- nanomaterials - Innovative designs for low wattage fuel cells - Applicable fuel cell technologies - Advantages of Nanomaterials in Fuel Cells. Supercapacitors - Basic Principles - General characterization - Classifications - Construction - Nanomaterials electrode design - Performance characteristics- application - Advantage of Nanomaterials in Supercapacitors

Refe	Reference(s):								
1.	Thomas Reddy, "Linden's Handbook of Batteries", McGraw Hill Professional, USA, 2010. (U-1,U-2,U-3,U-								
2.	Ronald M. Dell David A. J. Rand, "Understanding Batteries", RSC, UK, 2001.(U-2)								
3.	Conway, B. E., "Electrochemical Supercapacitors", Springer , UK , 2015 (U-5)								
4.	Huggins, Robert A., "Energy Storage - Fundamentals, Materials and Applications" Springer, UK, 2014								
5.	Lefrou C., Fabry P., Poignet JC., "Electrochemistry" Springer, UK, 2014								

K.S. Ran	gasamy College of Tech	nology - A	Autono	mous	Regu	lation		R	2018	
Department	Nano Science and Technology	Programme Code & Name				PNT : N	IT : M.Tech – Nano Science and Technology			
Elective III										
Course Code	Course Name		Hours / Week			Credit	Maximum Marks		m Marks	
Course Code			L	Т	Р	С	CA	ES	Total	
50 PNT E32	NANOTECHNOLOGY AUTOMOBILES	IN	3	0	0	3	50	50	100	
Objective(s) • To provide exposure to the students on nanotechnology in automobiles. • To study the various materials used in automobiles systems and its application										

NANOFUELS

Nanofuel-Engine performance-Emissions-Burning characteristics-Ignition delay-Stable suspensions of nanoparticles of AI, Fe and Boron in diesel were used as fuels- Fuel consumption materials -specific fuel consumption for AI as compared to diesel. -reduced environmental impact materials- efficiency of nanofuel materials- nanostructured lubricant -reduced frictional loss- Reduced friction-surface finish and affinity or oil

NANOFLUIDS

Synthesis of Nanofluids- methods-Smart Cooling Nanofluids- thermal properties of nanofluids- Thermal insulation -higher operating temperature-Reduced friction -surface finish and affinity or oil-Reduce dimension weight - replaces cast iron block/liner- Nanofluids for Sensing Applications - Heat transfer improvement using nanofluids-nanofluids for solar collectors- molecular fluid-advanced flow and heat transfer fluids-magnetic nanofluids-Nanofluid in Fuel Brake and Other Vehicular Nanofluids Cooling of Microchips Micro scale Fluidic Applications

NANO COATINGS

Nanocoating materials - Carbon based nanostructure materials- vehicle weight reduction-aluminium alloy engine-polycarbonate window-scratch resistant-UV resistant and self healing car paints -interior-automotive paints-dirt resistant paints- Nano-coatings for engine application- vehicles windows and wipers-automotive textiles-nanoparticles fillers for tires

NANOSENSORS

Micro scale physical - temperature, acceleration, pressure, strain - chemical sensors - oxygen and hydrogen - Safety-Additional airbags and sensors-Satellite sensing modules-Roll over sensing-Occupant position—Occupant Classification Sensors -Tyre pressure monitoring sensor-Lane Departure Warning -Driver drowsiness monitor-Night vision—Comfort—Convenience - Passive authentication-Door handle operation-Power door closure sliding/lift—Anti-trap, position- Multizone HVAC Temperature and humidity

CHALLENGES AND OPPORTUNITIES

Improving fuel cell performance of future generations of hydrogen powered cars-flexible hydrogen sensors nanostructured materials- Improve fuel efficiency - polymer glazing-fuel cell-solar cell-electro chromatic layers-High performance automobile systems

Ref	Reference(s):									
1	Joao Paulo Carmo and Joao Eduardo Ribeiro, New Advances in Vehicular Technology and Automotive Engineering", ISBN 978-953-51-0698-2, Published: August 1, 2012									
2	Yuwen Zhang ,Nanofluids: Research, Development and Applications, Nova Science Pub Inc (June 30, 2013)									
3	Michael Berger." Nanotechnology in the automotive industry" Copyright Nanowerk 2010									

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018									
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology			
Elective III									
Course Code	Course Name		Hours / Week			Credit	Maximum Marks		m Marks
Course Code			L	Т	Р	С	CA	ES	Total
50 PNT E33	NANODEVICES		3	0	0	3	50	50	100
To analyse the development of nanoelectronics. To study the principle behind the nanodevices. To explore the application of nanodevices. To analyse and study the molecular and bioelectronics on nano application.									

QUANTUM DEVICES

Quantum electronic devices – Electrons in mesocopic structures – Short-channel MOS transistor – Split gate transistor – Electron wave transistor – Electron spin transistor – Quantum cellular automata – Quantum dot array – Quantum computer- Bit and Qubit – Coherence and Entanglement – Quantum parallelism.

TUNNELING DEVICES

Tunneling element – Tunnel effect and tunneling elements - Tunneling diode – Resonant tunneling diode – Three-terminal resonate tunneling devices - Technology of RTD - Memory applications – Basics logic circuits – Dynamic logic gates - Digital circuits design based on RTBT – Single electron transistor (SET).

SUPERCONDUCTING DEVICES

Basics - Macroscopic characteristics - Macroscopic model - Super conducting switching devices - Cryotron - Josephson tunneling devices - Elementary circuits - Associative or Content - Addressable memory - SQUID - Flux quantum device - LC - Gate - Magnetic flux quantum - Quantum cellular automata - Quantum computer with single flux devices - SFQD - RSFQD - Application of superconducting devices.

CHALLENGES IN NANODEVICES

Limitations of integrated electronics - Survey of limits – Replacement of technologies – Energy supply and Heat dissipation – Parameter spread as limiting effect – Limits due to thermal particle motion - Debye length – Thermal noise - Reliability as limiting factor – Physical limits – Thermodynamic limits - Relativistic limits – Equal failure rates by tunneling and thermal noise.

BIOELECTRONICS

Bioelectronics – Molecular processor – DNA analyser molecular electronics – Switches based on fullerenes and nanotubes – Polymer electronic – Self assembling circuits – Optical molecular memories – DNA computer – Information processing with chemical reaction – Nanomachines – Parallel processing.

Ref	Reference(s):							
1	K. Goser, P. Glosekotter and J. Dienstuhl, "Nanoelectronics and Nanosystems-From Transistors to Molecular Quantum Devices", Springer, 2004.							
2	Herve Rigneault, Jean-Michel Lourtioz, Claude Delalande, Ariel Levenson, "Nanophotonics", ISTE.							
3	W.R.Fahrner, "Nanotechnology and Nanoelectronics – Materials, Devices and Measurement Techniques" Springer, 2006.							

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018									18
Department	Nano Science and Technology	Programme Code & Name			е	PNT : M.Tech – Nano Science and Technology			
			Elective	IV					
Course Code	Course Name		Hours / Week			Credit	M	Maximum Marks	
Course Code			L	Т	Р	С	CA	ES	Total
50 PNT E41	CORROSION ENG	INEERING	3	0	0	3	50	50	100
Objective(s)	To study the basic principle corrosion & Different form of corrosion.								

PRINCIPLES OF CORROSION PHENOMENON

Thermodynamics and kinetics: emf/galvanic series, Pourbaix diagram, exchange current density, passivity, Evans diagram, flade potential.

DIFFERENT FORMS OF CORROSION

Atmospheric/uniform, pitting crevice, intergranular, stree corrosion, corrosion fatique, dealloying, high temperature oxidation-origin and mechanism with specific examples.

CORROSION TESTING AND MONITORING

Non-Electrochemical and Electrochemical methods: weight loss method, Tafel Linear polarization and Impedance techniques, Lab, semi plant & field tests, susceptibility test.

CORROSION PROTECTION

Corrosion prevention through design, coatings, inhibitors, cathodic, anodic protection, specific applications, economics of corrosion control.

CORROSION & ITS CONTROL IN INDUSTRIES

Power, Process, Petrochemical, ship building, marine and fertilizer industries. Some case studies-Corrosion and its control in different engineering materials: concrete structures, duplex, super duplex stainless steels, ceramics, composites and polymers. Corrosion auditing in industries, Corrosion map of India.

Ref	Reference(s):						
1	B. J. Little, Microbiologically Influenced corrosion, Wiley-Intersciene (2007)						
2	C.A. C.Sequeira, Microbial Corrosion, European Federation of Corrosion, Maney Pub.(2000).						
3	Denny A Jones, Principles and Prevention of Corrosion (second edition), PrenticeHall, N. J.(1996).						
4	H.Videla, J. F. Wilkes, R.A.Silva, Manual of Biocorrosion, CRC Press (1996).						

K.S. Rangasamy College of Technology - Autonomous Regulation R 2018								18	
Department	Nano Science and Technology	Programme Code & Name			9	PNT : M.	Tech – N Techn		nce and
			Elective	IV					
Course Code	Course No	mo	Ног	ırs / We	ek	Credit Maximum Marks		/larks	
Course Code	Course Name		L	Т	Р	С	CA	ES	Total
50 PNT E43	E43 COMPUTER MODELING AND SIMULATION		3	0	0	3	50	50	100
Objective(s)	 To penetrate the basic computation methods. To study the modeling & Boundary analysis. 								

REVIEW OF COMPUTATIONAL METHODS

Solution of ordinary differential equations, Initial value and boundary value problems.

MODELING

Classification, Functions, Limitations and interrelationship of different types of models, Types and development of mathematical model. Development of rigorous and semirigorous physical models.

BOUNDARY ANANLYSIS

Solution of partial differential equations, Initial value and boundary value problems, Hyperbolic, parabolic and elliptic equations, Explicit and Implicit methods, Finite difference methods. Finite element method.

SIMULATION

Survey of simulation techniques, Molecular dynamics and Monte- Carlo simulations. Fuzzy Logic, neural networks and genetic algorithms.

APPLICATIONS

Application of above to model materials behavior and metallurgical processes.

Ref	Reference(s):					
1	Szekley, J.S, Evans, J.W, and Brimakombe, The mathematical and physical modeling of primary metals processing operations, Wiley					
2	Sibol, I.M, The Monte Carlo method, Little mathematics Library, Mir					
3	Rajasrkharan, S and Pai, G.A.V, Neural Networks, Fuzzy logic and Genetic algorithms synthesis and applications, Prentice Hall					

K.S. Rar	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018							2018	
Department	Nano Science and Technology	Programme Code & Name				PNT : M.Tech – Nano Science and Technology			
	Elective V								
Course Code	Course Name		Hou	lours / Week Credit			Maximum Marks		
Course Code			L	Т	Р	С	CA	ES	Total
50 PNT E51	NANOSAFETY AND ENVIRONMENTAL IS:	SUES	3	0	0	3	50	50	100
To provide exposure to the students on safety and environmental issues of nano science and technology. To explore the toxic effects of nanotechnology on human health and life, analyze the various issues on environmental effects and explore suitable remedial measures.									

Identification of Nano - Specific Risks- Responding to the Challenge -Human health hazard – Risk reduction – Standards – Safety – transportation of NP– Emergency responders. Risk assessment –Environmental Impact – Predicting hazard – Materials Characterization. Risk Assessment related to nanotechnology – Environmental and policy making- Ecotoxicity measurement of Polychlirinated biphenyl and intermediates in their degradation

NANOTOXICOLOGY

Inhalation of nanomaterials – Overview. Introduction- Inhalation deposition and Pulmonary clearance of Insoluble Solids – Bio –persistence of Inhaled solid material. Systemic Translocation of inhaled Particles. Pulmonary effects of SWCNT- Pulmonary Inflammatory Responses to SWCNTs *In Vivo* - Interactions of pulmonary Inflammation with oxidative stress – Interactions of SWCNTs with Macrophages

EXPERIMENTAL ISSUES

Nanoparticle exposure and systematic cardiovascular effects – experimental data – respiratory particulate matter exposure and cardiovascular toxicity, Nanoparticles – Hypothesis and research approaches. SWCNT – Experimental data. Toxicity of polymeric nanoparticles with respect to their application as drug carriers. Particle exposure through the indoor air environment –Measurement of indoor of PM and experimental study.

ETHICS

Needs for regulations, training and education for health protection and environmental security of nanotechnologies – definitions and essence – general benefits – benefits for health and medical practice – potential risks – The approaches to assessment of exposure to the nanotechnology. Bioethics and legal aspects of potential health and environmental risks in nanotechnology – Legal regulatory considerations of nanotechnology.

CHALLENGES AND FUTURES

Nanotechnology – the frame of worker training, public education, and participation – Introduction – Nanotoxicity – Workers protection – International documents – protection of medical staff – Nurses education – Public information. Occupational risk assessment and management – focus on Nanomaterials.

Total hours to be taught: 45

Reference(s): 1 P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006. 2 Vinod Labhasetwar and Diandra L. Leslie, "Biomedical Applications of nanotechnology", A John Willy & son Inc,NJ, USA, 2007. 3 Miyawaki, J.; et.al Toxicity of Single-Walled Carbon Nanohorns. ACS Nano 2 (213–226) 2008. 4 Hutchison, J. E. Green Nanoscience: A Proactive Approach to Advancing Applications and Reducing Implications of Nanotechnology. ACS Nano 2, (395–402) 2008.

K.S. Ra	K.S. Rangasamy College of Technology - Autonomous Regulation R 2018								
Department	Nano Science and Technology	Programme Code & Name			PNT : M.Tech – Nano Science a Technology				
Elective V									
Course Code	Course Name		Hou	urs / Week Credit			Maximum Marks		
Course Code			L	Т	Р	С	CA	ES	Total
50 PNT E52	INTELLECTUAL PROPERIGHTS	RTY	3	0	0	3	50	50	100
Objective(s)	bjective(s) To provide awareness about IP Rights. To provide exposure to protect the Intellectual property.								

IMPORTANCE OF INTELLECTUAL PROPERTY RIGHTS

Introduction – Tangible and Intangible Properties- Intellectual property- an intangible wealth and a product of creative mind – IPR and its significance- Types of IPRs

COPYRIGHTS AND RELATED ISSUSES

Works protected by copyright- Reproduction rights-moral rights-translation and adaptation rights-copyright issues-Piracy- civil -criminal remedies-Infringement- Patents – Copyrights of designs and related rights – Trade Marks and rights arising from Trademark registration – Definitions – Industrial Designs and Integrated circuits – Protection of Geographical Indications at national and International levels – Application Procedures

INTERNATIONAL AGREEMENT FOR THE PROTECTION OF IPR

Berne convention-Madrid agreement-Hague agreement-Patent cooperation treaty-Paris convention-Lisbon Agreement - Establishment of WIPO – UPOV and WTO-Mission and Activities – History – General Agreement on Trade and Tariff (GATT)-

PATENTED INVENTION AND ADMINISTRATION

Significance of Patent information-classification of invention according to technology- Novelty search and state of art search-Indian Position Vs WTO and Strategies – Indian IPR legislations – commitments to WTO-Patent Ordinance and the Bill – Draft of a national Intellectual Property Policy – Present against unfair competition80

APPLICATIONS

Case Studies on – Patents (Basumati rice- turmeric- Neem- etc-) – Copyright and related rights – Trade Marks – Industrial design and Integrated circuits – Geographic indications – Protection against unfair competition- Patent agents-Examiner of Patents- IPR Managers-

Ref	Reference(s):								
1	Prabuddha	Prabuddha Ganguli, "Intellectual Property Rights,"TMH, 2001.							
2	Subbaram (Printers a		" Handboo shers) Pvt- Ltd-		an Patent	Law and	Practice	"- S-	Viswanathan
3	Richard Learning I	Stim, ndia Priva	"Intellectual ate Ltd, 2004.	Property	Copyrights,	trademarks	, and	Patents,"	Cengage
4	Deborah Private Ltd	E. I, 2005.	Bouchoux,	"Intellectual	Property	Rights,"	Cengage	Learr	ning India

K.S.	K.S.Rangasamy College of Technology - Autonomous Regulation								R 2018
Department	Nano Science and Technology	Programme Code & Name			P	NT : M.T	Nano Sc nology	ience and	
	Elective V								
Course Code	ourse Code Course Name		Hours / Week Cred				Maximum Marks		n Marks
Course Code	Course Main	ie	L	Т	Р	С	CA	ES	Total
50 PNT E53	RESEARCH METHOD SCIENCE AND HUMA		3	0	0	3	50	50	100
Objectives To provide awareness in research methodology on science and humanities. To analysis the documentations & Plagiarism									

RESEARCH METHODOLOGY

Research Methods Versus Methodology-Objectives of Research-Types of Research-Research Approaches-Criteria of Good Research- Hypothesisation-Selection of Topic

DATA COLLECTION & COMPILING

Collection of Primary Data-Collection of Secondary Data-Interview Method-Compiling a Working Bibliography-Evaluating Sources

MECHANICS OF WRITING

Spelling-Punctuation-Abbreviations-Margins and Spacing – Heading and Title-Page Numbers-Corrections and Insertions

DOCUMENTATION

Preparing the list of works cited - Citing Sources in the text- Endnotes and footnotes-Parenthetical References.

PLAGIARISM

Definition – Forms of Plagiarism – Consequences of Plagiarism- Unintentional Plagiarism-Copyright Infringement-Collaborative work

Refe	Reference(s):					
1.	Joseph Gibaldi, "MLA Handbook for Writers of Research Papers', Modern Language Association of America, 2009					
2.	Wayne Goddard and Stuart Melville, "Research Methodology – An Introduction', Juta and Company Ltd, 2004					
3.	Ranjit Kumar, "Research Methodology", Sage Publications, 1999.					

DEPARTMENT OF NANOSCIENEC AND TECHNOLOGY (2019-2021)

BoS Date: 22.10.2020 Time: 11:00 A.m. to 1:00 P.m.

i) A panel of 6 (Six) experts from which 1 (ONE) will be nominated by the Vice-chancellor of Anna University, Chennai.

S.No.	Name	Address	Signature
1	Dr. M. Sukumar	Professor Centre for Food Technology ACT Campus Anna University Chennai - 600 025	gerken

ii) List of 2 (TWO) subject experts (External) to be nominated by the Academic Council.

S. No.	Name	Address	Signature
1	Dr. Chinnuswamy Viswanathan, MSc., Ph.D., FASch	Associate Professor Department of Nanoscience and Technology, Bharathiyar University, Coimbatore	e.vis2
2	Dr. L.C. Nehru M.Sc., M.Phil., Ph.D.,	Assistant Professor Department of Medical Physics Bharathidasan University Tiruchirappalli – 620 024	Work

iii)1 (ONE) expert from Industry

S.No.	Name	Address	Signature
1	Anto Godwin M	Head and Technology, NoPo Nanotechnologies Pvt Ltd, Bangalore 560100	M Day

iv)1 (ONE) Meritorious Alumnus

S.No.	Name	Address	Signature
-------	------	---------	-----------

		Research Analyst, ArrkayEngg Works	
1	Ms. Brindha Ramasubramanian,	& M.Tech, Pondicherry	
		University,	
		Center for Nanoscience and	
		Technology, Pondicherry	Brindleik
		University, Kalapet,	
		Puducherry - 605014.	

&Bermin)

BoS Chairman